
between the activity difference δ′
t
and the

regular temporal difference δ
t
never

substantially affects the plasticity of a

synapse. This happens, for instance, if

there is only in fact one single reward

right at the end of the trial [e.g. r
t
=0, t < T;

r(T )=1]. In a simplification of the version

of this that Rao and Sejnowski consider,

r(T )=1 comes from an action potential,

caused by a privileged input to the

postsynaptic cell, backpropagating up its

dendritic tree. This makes positive the

activity difference associated with pre-

synaptic events initiated at time t=T−1

in a trial, thus engendering increases in

synaptic efficacy. These, in turn, reduce

the activity difference, by increasing P
T−1

,

until the difference reaches 0. This

process can lead to the prior pre-synaptic

events causing the post-synaptic cell to

spike in a preditive manner. Rao and

Sejnowski further suggest a specialized

inhibitory connection architecture [18],

which allows the predictive spike to

cancel out the predicted spike (thus

eliminating the effect of the difference

between δ
t
and δ′

t
).

In the converse case, what happens 

if indeed δ′
t

is used in the learning rule

rather than δ
t
? I don’t know of

compelling computational analyses of

this case, other than the obvious point

that the resulting learning rule looks

like a correlational learning rule

between the stimuli and the differences

in successive outputs.

Rao and Sejnowski face the even

trickier problem of making the learning

rules work in the face of biophysically

realistic timescales for synaptic currents

and membrane potentials and the like.

The most dangerous problem that arises

is instability, that the learning rule can

make the synaptic efficacies rise without

bound. This happens when the

biophysical mechanism for propagating

information around the post-synaptic cell

(backpropagating action potentials) lasts

over a longer time scale than that

involved in the derivative P
t+1

−P
t
. That

can make the learning rule operate more

like a regular correlational learning rule,

and these are notoriously unstable.

Synaptic saturation is suggested as a

possible fix, although one might worry

about a consequent loss of synaptic

selectivity.

Altogether, the notion that temporally

asymmetric Hebbian learning rules are

best seen in predictive rather than

correlational terms has been taken in

various interesting directions. Rao and

Sejnowski usefully add to our armoury of

ways of approaching such rules, and

remind us of an essential Yogic truth.
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Neuroecology and psychological modularity

Jonathan I. Flombaum, Laurie R. Santos and Marc D. Hauser

In a recent review, Bolhuis and Macphail

challenge the thesis that specialized

systems mediate the learning, encoding

and retrieval of different types of

information – what they call a

neuroecological approach to learning and

memory [1]. In particular, they challenge

‘the arbitrary assumption that different

“problems” engage different memory

mechanisms’ (p. 426), and the idea that

this fact can be used to motivate

neurobiological studies. To substantiate

their claims, they appeal to data dealing

with the neural substrates of song

learning and food storage in birds.

Recently, Hampton et al. [2] pointed out

how Bolhuis and Macphail misrepresent

these data and set-up a ‘straw

neuroecologist’ with respect to the

functionalist/adaptionist perspective.

Here, we take up a different problem.

Debate



Namely, we argue that neurobiological

data cannot be used to bring a case

against the thesis of psychological

modularity, whether in the case of

memory and learning, or otherwise.

Data of this sort, although relevant to a

discussion of the principles underlying

modularity, are orthogonal to a

discussion of whether or not modularity,

in the psychological sense, exists in the

first place.

As Bolhuis and Macphail point out,

much of the interest in the idea of

modularity comes from the work of the

philosopher Jerry Fodor [3]. Since their

original conception in 1983, Fodor’s ideas

have generated many debates and

undergone many revisions and

reincarnations [4]. Evolutionary

psychologists, for example, have argued

that most psychological systems, not just

the perceptual ones, are modular, and

that these modules have been shaped by

natural selection [5]. In this article, we

stick with Fodor’s original conception of

modularity because this is the version to

which Bolhuis and Macphail refer.

Modularity is the thesis that the mind

contains independent input systems that

are restricted in the types of information

that they can consult [3]. Therefore, the

fundamental characteristic of a modular

system is that information that is

accessible to one module is not

necessarily available to all the other

modules within that particular system.

In other words, to use the Fodorian term,

modules are ‘informationally

encapsulated’ (Ref. [3], p. 71). A classic

example of an informationally

encapsulated module is the perception of

line length. Fodor discusses the famous

Müller-Lyer illusion: although many of

us have seen this illusion a number of

times and know that that the two middle

lines are exactly the same length, we are

still fooled into perceiving the line with

the acute arrowheads as longer than the

one with obtuse arrowheads. This

illusion persists even after we measure

the lines with a ruler because our visual

system cannot make use of the

knowledge we can derive from specific

measurements. The lack of connection

between these systems, their

encapsulation, represents the signature

of modules in the Fodorian sense.

Because modules are encapsulated,

we can expect them to have other

characteristics as well. They are often

(though not necessarily) mandatory, fast,

shallow in output, susceptible to selective

impairment [3] and, sometimes, executed

in a highly specific neural locus [6,7].

Bolhuis and Macphail present a

somewhat different and, we believe,

incorrect view of modularity, one that

leads them to question the usefulness of

neuroecology. We argue that Bolhuis and

Macphail make three incorrect claims

about modules, which we address in turn.

Modules are not always innate

Bolhuis and Macphail claim that

modules ‘are innately specified – that is,

they are species specific.’ (p. 427, Box 1).

Because the fundamental characteristic

of modularity is informational

encapsulation, we see no a priori

reason to believe that the eventual

manifestation of a module must be

innately predetermined. Some have

argued, in fact, that modules can arise

exclusively from experience [6–8]. Simply

put, restrictions on information access

can be implemented through experience;

they need not be predetermined.

Processing written words, for example, is

a modular system that is not innate; an

illiterate person will not automatically

read words, show characteristic Stroop

effects, and so forth. By contrast, those

who have learned to read cannot avoid

reading every word that they see; that is

to say, the reading module is acquired.

There is no reason, therefore, to assume

that modules must be innate. Similarly,

‘species-specificity’ is neither the same

as ‘innately specified,’ nor is it a

requirement of modularity as Bolhuis

and Macphail suggest. This is clear when

we again consider Fodor’s line perception

example, a modular system that is most

probably shared across the primate

order. Perhaps, what Bolhuis and

Macphail mean by ‘species-specific’ is

that all members of a particular species

share a particular module, not that the

module is absent in other species. If this

is the case, however, then one need only

reconsider the reading example to see

why this characteristic is not necessarily

true of all modules.

Modules need not be domain-specific

We also disagree with the claim made by

Bolhuis and Macphail that modules are

‘domain-specific’ (p. 427). Although there

is certainly controversy within the

cognitive sciences with respect to

defining a domain, most would agree that

it represents a finite computational

problem space in which a given system

operates. Thus, a domain-specific

mechanism becomes engaged only when

faced with particular types of problems,

and operates by picking out certain

relevant features, rejecting others, and

using specialized learning mechanisms.

The domain of song learning, for

example, refers to the system (or set of

systems) that processes information

associated with recognizing and

producing conspecific song. The essence

of domain-specificity, then, is the

context-dependent application of a set of

psychological mechanisms. The contexts,

or domains, for which domain-specific

mechanisms emerge are typically those

that play an ecologically relevant role for

a given organism [5,9], although

domain-specific mechanisms can

certainly be shared across different

animal species. For example, the

computations that underlie the

approximation of large numbers are

shared among birds, rodents, non-human

primates and humans [10].

Although the notion of a domain

restricts the class of computational

problems to be considered (acting like a

filter) it does not necessarily make any

restrictions on the inputs that are

considered while solving particular

problems [3,6,7]. This differs from

modules, therefore, in that domain-

specific mechanisms need not be

informationally encapsulated. Modules,

on the other hand, make no restriction on

the specific type of computational problem

being solved. Line-length modules, for

example, are used to solve problems from

a variety of different domains, including

resolving visual illusions, recognizing

words, and distinguishing between faces; 

line-length perception is thus a

domain-general module. For these

reasons, domain-specificity is not a

fundamental criterion of modularity, as

Bolhuis and Macphail have suggested.

Although modules are often domain-

specific, as Fodor [3] and others [7] have

pointed out, they need not be.

We raise these problems with Bolhuis

and Macphail’s view of domain-specificity
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‘...neurobiological data cannot challenge

the claim that the psychological

mechanisms ... are modular.’



and modularity because they lead them

to conclude that song learning and food

storage in birds are not domain-specific

computations. They argue this in two

ways. First, they appeal to the fact that

memory is not modular by Fodor’s

account and is, instead, what he

considered a central system [3]. If a

module is domain-specific and memory

is not modular, then, so their reasoning

goes, memory is not domain-specific.

The logic here is flawed, however,

because Fodor’s view of modularity does

not require domain specificity as a

necessary or sufficient criterion.

In particular, birds may not be limited in

the information that they access while

learning song or retrieving food;

nevertheless, birds might well deploy

specialized learning mechanisms in these

contexts. Second, Bolhuis and Macphail

use neurobiological evidence to argue

that the mechanisms of song learning

and food retrieval are not modular, and

therefore, not domain specific. However,

since domain-specific mechanisms need

not be modular (in the sense of

information encapsulation), these data

cannot challenge the claim that these

mechanisms are domain-specific. This

leads us to our final point about

modularity, and our main critique.

Modules are not always localized in a

specific part of the brain

We disagree with Bolhuis and Macphail’s

claim that modules are ‘hardwired, and

located in specific brain regions’ (p. 427,

Box 1). More specifically, we argue that if

modules do not need to be located in

specific brain areas, then neurobiological

data cannot challenge the claim that the

psychological mechanisms underlying

song learning and food retrieval are

modular. Bolhuis and Macphail’s error

arises in assuming that the execution of

a psychological module in a similarly

‘modular’ piece of brain is, like

information encapsulation, a necessary

component of modularity. Their logic is

that if a system is psychologically

modular, it must have a modular neural

substrate as well: ‘If functional

requirements lead to the evolution of

different cognitive modules, so the

reasoning goes, then there should also be

neural modules that are specialized for a

particular function’ (p. 426). By this

reasoning, evidence that a hypothesized

psychological module, such as a

mechanism for learning song or

remembering food locations, does not

have a perfectly modular neural

substrate falsifies the claim that the

psychological module exists in the first

place. This is the type of evidence

presented by Bolhuis and Macphail. 

It is not, however, the case that a

psychological module must have a

corresponding neural module in the

sense of a specified brain nucleus.

The thesis that a system is limited in

the types of information that it can

access does not imply that this system

has a requisite form of physical

implementation. We can imagine the

general case easily if we consider a

computer. We might argue that a

particular program is modular if we

limit the program to accessing certain

databases in the computer, but not

others. However, this claim tells us

nothing about how we expect the

computer hardware to be organized.

Consider again the example of line-

length perception. Would we argue that

length perception was not modular if it

were found that length is realized jointly

by a neuron in the occipital lobe, a neuron

in the prefrontal cortex, and a neuron in

the forebrain? The obvious answer to this

question is a resounding ‘No’. By this

logic, then, the data presented by Bolhuis

and Macphail simply cannot falsify the

conclusion that birds have modular

systems for song learning and food

retrieval, nor can data of this sort

challenge the more general claim that

there are specialized mechanisms for

learning and memory.

Distributed neurobiological architectures

To be fair, Bolhuis and Macphail are not

alone in their misconceptions of

modularity, particularly in the notion

that psychological modularity assumes

neural modularity. Many cognitive

scientists, for example, have either

implicitly or explicitly presupposed a

necessary link between modularity at

the cognitive and neural levels [8,10].

Our point is simply that Bolhuis and

Macphail’s assumptions about

modularity are just that – assumptions.

And sadly, they are assumptions that

detract from what we feel is the most

important point of their review, namely,

that seemingly domain-specific cognitive

systems can in fact be implemented in a

distributed neural substrate. The data

Bolhuis and Macphail review on song

learning and food storage in birds

suggest that distributed neurobiological

architectures can subserve specified

cognitive functions. These data are

important in light of the fact that

cognitive neuroscientists still know

relatively little about how

neuroanatomical structures constrain

cognitive computations, and,

particularly, about how specificity at the

neural level impacts the implementation

(and evolution) of cognitive specificity.

In the same way that cognitive scientists

working on humans should avail

themselves of the existing comparative

literature in order to understand

whether the modules that subserve

human thought evolved recently or in

the distant past, ethologists working on

non-human animals must avail

themselves of the appropriate cognitive

theories in order to ensure that they are

shooting at the right targets.
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